Project Information

Under the EU's Horizon 2020 R&I Programme Acronym: SCARABEUS Grant Agreement ID: 814985 Duration: 4 years & 10 months (1 April 2019 - 31 February 2024) Programme: H2020-EU.3.3.2. (Low-cost, low-carbon energy supply) Topic: LC-SC3-RES-11-2018

(Developing solutions to reduce the cost and increase performance of renewable technologies) Call for Proposal: H2020-LC-SC3-2018-RES-TwoStages Funding Scheme: RIA - Research and Innovation action Budget: 4 950 266,25 € (100% EU funding)

SCARABEUS Contact

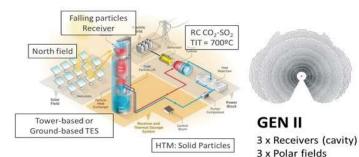
For further information, please contact:

Giampaolo Manzolini (Project Coordinator)

Dipartimento di Energia Politecnico di Milano, Italy Phone: +39 (0)22 399 3810 e-mail: giampaolo.manzolini@polimi.it

David Sánchez (Dissemination Manager)


Department of Energy Engineering University of Seville, Spain Phone: +34 95 448 7241 e-mail: ds@us.es


www.scarabeusproject.eu

Technology For The Short (GEN I) And Mid (GEN II) Terms

Gen I: Molten Salt Technology Gen II: Particle Technology

1 x External cylindrical receiver 1 x Circular field

SCARABEUS Consortium Members

www.us.es

Baker Hughes >>

www.bakerhughes.com

www.guantis-intl.com

www.unibs.it

SCARABEUS 🔦

Supercritical CARbon dioxide/Alternative fluids Blends for Efficiency Upgrade of Solar power plants

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 814985

Technical Objectives

- Specific to hot environments (>40°C)
- Demonstrate feasibility of breakthrough working fluids
- Higher than 50% power block efficiency

Economic Objectives

- 30% lower CapEx
- 35% lower OpEx
- 30% lower Levelised Cost of Electricity

Environmental Objectives

- 34% lower Carbon Footprint than IPCC* standard

www.tuwien.at

www.polimi.it

www.city.ac.uk

www.kelvion.com

www.coxabengoa.com

WP2: New Working Fluid - CO, Mixtures

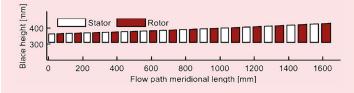
- Over fifty potential dopants screened.
- Five dopants identified: C₆F₆, TiCl₄, SO₂, SiCl₄, C₄F₁₀.
- Full theoretical and experimental characterisation.
- Tests to verify material compatibility.

CO₂ BLENDS

Dopants

identification

• L-V equilibrium curves produced experimentally.


Vapour-liquid

equilibrium test

Thermal stability test

WP3: Turbomachinery Design

- 135 MWe gross turbine output at generator termianls (100 MWe Net).
- Complete CO₂/SO₂ turbine design (aero/mechanical).
- 14 axial stages achieve 92.9% flow path total-to-total efficiency.
- Rotordynamic design acceptable: safe stability margin.
- Mechanical design shows resistance lof last rotor to High Cyclw Fatigue (Ni-based alloy).
- Cooling system successfully satisfied requirements of Dry Gas Seals and stainless-steel casing.

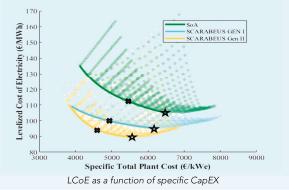
Kelvion

WP5: Technoeconomics, social and environmental assessment

Thermodynamic

properties

EoS calibration

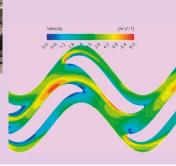

Promisina

dopants

Long term thermal stability test

O

- Over 40 cycl layouts screened.
- Two storage/receiver technologies assessed: molten salt and particles.
- IA-based techno-economic optimisation.
- Optimum performance for transcritical recompression cycle running on 80% CO₂ 20% SO₂ (Gen I and Gen II).
- >50% thermal efficiency (TIT=700°C) at 50°C ambient temperature.
- Large reduction of capital cost enabled.
- 30% lower Levelised Cot of Electricity (LCoE).
- Lower carbon footprint than IPCC standard.


WP4: ACC and HX development

- Two Printed Circuit Heat Exchangers supplied.
- Recuperator No. 1: SS316 with zigzag channels.
- Recuperator No. 2: SS316 / Inconel 625 (headers and flanges) with S-shape channels (12% thickness reduction).
- Prototype ACC (Kelvion) tested at TUW: groovy fins on air side, and DIESTA inner fins on $\rm CO_2$ side.

PCHE No. 2

CFD analysis of S-shape channels

WP6: Test rig and experimental validation

- First of its kind test rig for high temperature testing of CO₂ mixtures.
- Three innovative heat exchangers tested: PCHE No. 1, No. 2 and ACC.
- High pressure and temperature testing completed at industrially-relevant scale: TRL 5/6.
- SCARABEUS concept for high temperature condensation demonstrated.

Deatil of the Test Rig

Prototype ACC