

R&D activities on sCO₂ in Europe: E02: Components Challenge – Compressors

5 December 2022

5 December 2022

Jitka Spolcova – ETN Global – Intro

This webinar is in cooperation with 8 European R&D projects

Note: for more information about the above projects please refer to the proceedings from the first webinar's episode

Webinar's content & speakers

Giacomo Persico Politecnico di Milano Marco Ruggiero Baker Hughes

Rasmus Rubycz Atlas Copco

R&D activities on sCO₂ in Europe: Components Challenge – compressors

Scientific challenges of pumps and compressors Giacomo Persico

POLITECNICO MILANO 1863 ENERGY DEPARTMENT

6 December 2022

Giacomo Persico, Politecnico di Milano

sCO2 power systems configurations

Supercritical (CO2) and trans-critical (CO2/CO2-blends)

 \rightarrow near-critical compressors vs sub-critical pumps

sCO2 power systems configurations

Supercritical (sCO2) and trans-critical (sCO2/sCO2-blends) → near-critical compressors vs sub-critical pumps

Pros:

- ✓ Single-phase cycle
- Low compression work
- ✓ High-density \rightarrow compact machines

Cons:

✓ Near-critical state at compressor intake

 \rightarrow non-ideality, phase change (cavitation/condensation)

- ✓ Too small size for low power capacity systems
- → technology/manufacturing issues

sCO2 power systems configurations

Supercritical (sCO2) and **trans-critical** (sCO2/sCO2-blends) → near-critical compressors vs **sub-critical pumps**

Pros:

- ✓ Rankine cycle \rightarrow even lower pump work
- ✓ Opportunity for pump standardization
- ✓ sCO2-blends allow changing critical state
 → extend trans-critical cycle to high temperature
 Cons:
- ✓ Severe issues of CO2 pump cavitation
- ✓ Compressibility effects in the CO2 pump
- ✓ Complex thermodynamics of sCO2-blends

sCO2 compressors – fluid non ideality

For an ideal gas:

Close to the critical point:

$$v \neq v_{id} \implies Z \stackrel{\text{\tiny def}}{=} {}^v\!/\!{}_{v_{id}} \ll 1$$
 ;

$$k \neq \gamma$$
; $k = (T, s): k \uparrow as entropy \downarrow$.

sCO2 compressors – phase change (I)

Phenomena: acceleration at intake \rightarrow dive **into the dome**!

Persico et al., Journal of Engineering for gas turbines and power 2021

 $1 \mapsto 2$: Near-critical compression

Onset of two-phase flows --- due to local flow accelerations

Romei and Persico, Applied Thermal Engineering 2021

sCO2 compressors – phase change (II)

Huge drop of speed of sound

→ anticipated choking, impact on sCO₂ compressor rangeability!

Toni et al., International sCO2 Power Cycles Symposium 2022

Mortzheim et al, ASME Turbo Expo 2021

sCO2 compressors – state sensitivity

Impact of intake state: pressure ratio, efficiency, rangeability

sCO2 compressors – technology

High pressure – low temperature: compact machines

- ✓ Low volumetric flow rate
- → radial machine for most applications
- \rightarrow specific design strategies for low flow-function impellers
- \checkmark Limited pressure ratio per stage (2—3)
- ightarrow relatively acceptable stresses, no creep issues
- \rightarrow relatively conventional materials (supply chain issues?)
- ✓ Size:
- \rightarrow manufacturing issues (DGS, surface roughness)
- → can we identify a minimum sCO2 plant capacity set by compressor manufacturing limitations?

ETN Gl@bal

sCO2 compressors – selection

sCO2 compressor ranges:

- ✓ Power < 1 MWe: very compact / very high-speed impellers → really feasible?</p>
- ✓ 1 < Power < 10 MWe: compact and fast but feasible</p>
- ✓ ~50 MWe: axial compressors become relevant
- ✓ Power > 300 MWe: only axial compressors are effective → reliable threshold?
- \rightarrow can axial compressors withstand such high aerodynamic forcing \rightarrow high density, thick profiles?
- → might **pump**-based trans-critical cycles be more advantageous for very high power capacity?

Power (MW _e)	0.3	1.0	3.0	10	30 1	00 3	00
Speed/size	75,000 rpm/5 cm	30,000	rpm/14 cm	10,000	rpm/40 cm	3600 rpr	m/1.2 m
	Single stage	.j	(Radial flov	v)	Mult	ti stage]
Compressor 1					(Axial flo	w) Mu	ilti stage

Musgrove and Wright, "Introduction and Background", Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles, 2017

CO2 / CO2-blends pumps

Sub-critical fluid, liquid-like thermodynamics, small size

Compressibility effects not negligible:

- → Issues in a thermodynamic region still not consolidated (CO2-blends especially)
- → Phase changes occurs as cavitation, with $v_v \gg v_l$: bubbles not dispersed, bubble implosion might become critical
- → Phase change process in case of CO2-blends still an open issue, dedicated criteria to avoid cavitation need to be developed

Technology aspects:

- \rightarrow Can we identify a minimum technology-driven size also for pumps?
- \rightarrow Might the use of pumps open the way for component standardization?
- \rightarrow Is there room for scalability?

R&D activities on sCO₂ in Europe: Components Challenge – compressors Thank you!

Giacomo Persico

giacomo.persico@polimi.it

Giacomo Persico, Politecnico di Milano

R&D activities on sCO₂ in Europe: Components Challenge – compressors

Industrial experience in design and testing Marco Ruggiero

5 December 2022

Marco Ruggiero - Baker Hughes

Summary

- Baker Hughes at a glance
- sCO2 Compressor testing experience at Baker Hughes
- Compressor challenges
- sCO2 Pump testing experience at Baker Hughes
- Pump challenges
- Conclusions

We are an **energy** technology company.

Our innovative technologies are taking **energy forward**.

sCO2 Compressor testing experience

Compressor test rig @ Baker Hughes site in Florence

Main features

- 10MW driver
- Speed up to 14k rpm
- Two phase gas loop
- Designed for up to 670 bar

sCO2 Compressor testing experience

sCO2 compressor prototype

Main features

- 5MW
- Speed 11.2k rpm
- Stacked rotor
- Variable geometry IGV

ETN

sCO2 Compressor testing experience

- Suction control temperature is critical
- Results validate CFD modeling* based on barotropic relation $\rho = f(p)$
- Good rotordynamic stability even if compressor way outside the CSR and avg gas density map

Flow Coefficient/Flow coefficient desig

0.9 1.0

Flow Coefficient/Flow coefficient desig

* developed in collaboration with Politecnico di Milano

sCO2 Compressor challenges

- Maintaining compressor inlet temperature through ambient and load changes is critical for optimal efficiency
- Effects of saturation and condensation forces the development of a new aero design which includes splitter blades
- Operation of DGS to prevent leakage to ambient and solid formation in transients
- Pure radial machine only for up to 50MW; gradual migration to axial afterward (initial front stage / full axial machine). Introduction of typical axial machine challenges on front stages (flutter, 1st flex mode response) in a high density environment (forcing vs damping)
- For very small machines the defining factor is the weight of leakages over main flow. Effect of non scalable geometrical features below 100mm diameter on efficiency.

CO2 Pumps testing experience

CO2 pump test rig @ Baker Hughes site in Bari

- Max flow rate 35kg/s
- Suction conditions (80-100 bar)

CO2 Pumps testing experience

Consolidated product for Enhanced Oil Recovery

Nominal speed t	test: 7600RPM
Design polytropi	c head 3900m
Test loop "Settle-out conditions" A (100bara, 15°C)	Test loop "Settle-out conditions" B (100bara, 40°C)
 Max deltaP delivered, ρ_{ave} = 900kg/m3 BH model EOS accuracy of predictive model for CO₂ liquid pumping DGS's flushing parameters assessment in dynamic and standstill conditions with CO₂ liquid. 	 High compressibility, ρ_{ave} = 600kg/m3 Max density variation through the pump. Validation of new impeller family for CO₂ application BH model EOS accuracy of predictive model for CO₂ supercritical pumping. DGS's flushing parameters assessment in dynamic and standstill conditions with CO₂ supercritical.

sCO2 Pump challenges

- CO2 (and CO2 with blends) EoS still not well characterized in liquid region
- High density variation through the pump
- Management of inlet conditions
- Upward scalability limited by volumetric flow (max about 1500 m3/h); downward scalability limited by change in pump type as below 300 NS it becomes a volumetric pump and the effect of non scalable geometrical features below 100mm diameter

Conclusions

- Consolidated experience in sCO2 pumping
- Europe first full scale sCO2 compressor tested on the critical point
- DGS leakages recompression system is our next challenge, synergistic with expander

Thank you for listening!

Marco Ruggiero marco.ruggiero@bakerhughes.com

R&D activities on sCO₂ in Europe: Components Challenge – Compressors

Industrial Experience sCO2 Compression

Atlas Copco Gas and Process

Rasmus Rubycz / Ulrich Schmitz - December 2022

5 December 2022

Atlas Copco Gas and Process – Compressor sCO2

Atlas Copco Gas and Process

Leveraging decades of experience in CO2 handling for the next phase of sCO2 turbomachinery evolution

This is the Atlas Copco Group

Customers in more than **180** countries

43 000 employees in 70 countries

Established in **1873** Stockholm, Sweden

Turnover of **111** BSEK/ **11** BEUR

Operating margin of **21.2%**

ETN Gl@ba

sCO2 properties are challenging

Comparing Air with sCO2

	Air	sCO2
Pressure	74bar	74bar
Temperature	31°C	31°C
Density	85 kg/m³	486 kg/m³
Diffusion in Elastomers	Low	High

Source: https://de.wikipedia.org/wiki/Kritischer_Punkt_%28Thermodynamik%29

sCO2 Component Challenge – General sCO2 is not just another gas

	Typical Turbocompressor or -expander	Supercritical CO2 Turbocompressor or -expander
Pressure	0 to 50 bara	30 to 300 bara
Temperature	-196 to 250°C	0 to 500°C
Power	200 to 25 000 kW	200 to 25 000 kW
Impeller Diameter	150 to 1530 mm	150 to 500 mm
Impeller power density (kW/cm²)	0,1 to 0,8	3 to 20

sCO2 Component Challenge – in Detail

Volute

Static parts to withstand high pressure, temp. and cyclic loads under sCO2 atm

Impeller

Needs to be able to withstand high temperatures as well as extreme power density

Guide Vanes

High mechanical load due to high density and temperature

Shaft Seal

Dry Gas Seal to withstand sCO2 at extreme high pressures and high temperatures

Bearing

High load due to high power density

Pinion

High-speed with high torque due to high density sCO2

Innovation in CO2 compression

Major Milestones

2015

ETN

2021

R&D Activities at Atlas Copco GAP

Paving the way to commercial projects

- In-House testing of Dry Gas Seal (DGS) in collaboration with Seal OEM
- Special compressor stage mock-up for testing
- Target: Qualification of DGS for severe sCO2 operation conditions >200bar & >200°C
- Successful implementation of results in commecial project

R&D Activities at Atlas Copco GAP

Paving the way to commercial projects

- Verification of database values on sCO2 fluid properties
- Calibration of CFD calculation models by real teststand data
- Iterative correction of mathematical models lead to high precision in machine design

Industrial Experience – Greenhouse NL 著

Year Ordered	Code Word	Name of Buyer	Compressor Type	Q'ty	Gas Handled	Volume m³/h	t1 °C	P1 bar(a)	P2 bar(a)	Speed Rotors rpm	Driver Power kW	Driver Speed rpm	Name of End User	In Country
2005	Greenhouse	Hoek Loos (Linde)	GT050T4K1	3	CO ₂	18 544	25	1,06	22	13 658 26 558	2 650	2 960	Hoek Loos (Linde)	The Netherlands

Industrial Experience – Datang China

Year Ordered	Code Word	Name of Buyer	Compressor Type	Q'ty	Gas Handled	Volume m ³ /h	t1 °C	P1 bar(a)	P2 bar(a)	Speed Rotors rpm	Driver Power kW	Driver Speed rpm	Name of End User	In Country
2008	Datang CO ₂	CNWR & EPM&E	GT070T5K1/ 021T1K1	3	CO ₂	43 410 46 548	12 87	1,09 55,43	55,47 82,37	10 364 32 465 28 500	9 300	6 000	Datang International Power	China

Industrial Experience – Acron Russia

Year Ordered	Code Word	Name of Buyer	Compresso r Type	Q'ty	Gas Handled	Volume m³/h	t1 °C	P1 bar(a)	P2 bar(a)	Speed Rotors rpm	Driver Power kW	Driver Speed rpm	Name of End User	In Country
2013	Veliky Novgorod	Acron	GT040T8S1	2	CO ₂	21 999	45	1,06	202	18 034 32 461 36 068 37 455	5 150	2 960	Acron	Russia

Industrial Experience – NetPower USA

Leveraging the experience of decades

Summary – top priorities for further design Evolution

- Thermodynamic and fluid property challenge Compare theoretical predictions with field experience of compressor operation near the critical point
- Material Challenge refine current material selections to push the limits even further in the supercritical region
- Improve performance of sealing systems (lower leakage, higher pressure and temperature) in collaboration with sealing OEMs
- Apply technology advances to other areas than power generation, such as industrial heat pump systems and mobile waste-to-power recovery systems

