

Giampaolo Manzolini – Politecnico di Milano

LC-SC3-RES-20-2020, grant agreement No. 101022686

Presentation structure

- Project Summary
- Objectives & expected impact
- Scope
- Main results/outcomes
- Options for exploitation/collaboration/follow-up activities

Project summary

Funding source	H2020 project in collaboration with Gulf Cooperation Council
Budget	14.5 M€ project cost, 10 M€ provided by the EU commission
Duration	48 months (June 2021 – May 2025)
Start TRL	5
End TRL	7

11111

000

University of Maribor

& TECHNOLOGY ALLIANCE

Fraunhofer

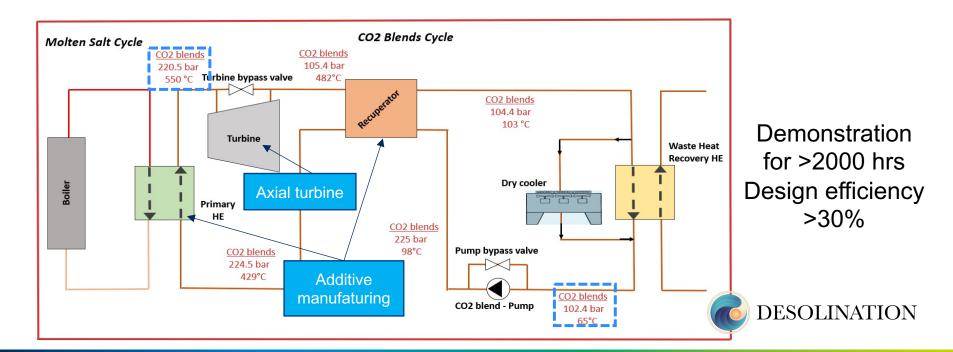
LULEÅ

UNIVERSITET

temisth

19 October 2022

Objectives & expected impact



- DESOLINATION will develop and demonstrate a 2 MW power cycle based on CO₂ blends and coupled with desalination process
 - Demonstrate the CO₂ blends concept in Saudi Arabia and at relevant size;
 - Increase the thermal-to-electric conversion efficiency with respect to both conventional steam cycle and pure sCO2 cycle;
 - Reduce the power block specific costs with respect to both conventional steam cycle and pure sCO2 cycle;

Scope – the demo concept

Main results/outcomes

- Identify the CO₂ blend which optimizes the cycle within the operating temperature range;
- Select the most suitable material for the considered working fluid and the operating conditions;
- Determine the optimal heat exchanger design with the innovative manufacturing procedure;
- Design a 100 MW cycle for CSP applications;

Options for exploitation/ collaboration/ follow-up activities

- Modelling: Benchmark cycle design and performance;
- Material compatibility testing: identify the most suitable material for the innovative blend;
- Heat transfer measurement: determine the heat transfer properties of the innovative blend;
- Demo plant: synergies for the demonstration might be considered and explored

Contacts

Website: www.desolination.eu

LinkedIn: H2020 DESOLINATION

Twitter: @desolination

■ Email: <u>contact@desolination.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. DESOLINATION 101022686.